
NAG C Library Function Document

nag_pde_parab_1d_euler_hll (d03pwc)

1 Purpose

nag_pde_parab_1d_euler_hll (d03pwc) calculates a numerical flux function using a modified HLL
(Harten–Lax–van Leer) Approximate Riemann Solver for the Euler equations in conservative form. It is
designed primarily for use with the upwind discretization schemes nag_pde_parab_1d_cd (d03pfc),
nag_pde_parab_1d_cd_ode (d03plc) or nag_pde_parab_1d_cd_ode_remesh (d03psc), but may also be
applicable to other conservative upwind schemes requiring numerical flux functions.

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_euler_hll (const double uleft[], const double uright[],
double gamma, double flux[], Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_euler_hll (d03pwc) calculates a numerical flux function at a single spatial point using a
modified HLL (Harten–Lax–van Leer) Approximate Riemann Solver (see Toro (1992), Toro (1996) and
Toro et al. (1994)) for the Euler equations (for a perfect gas) in conservative form. You must supply the
left and right solution values at the point where the numerical flux is required, i.e., the initial left and right
states of the Riemann problem defined below. In nag_pde_parab_1d_cd (d03pfc),
nag_pde_parab_1d_cd_ode (d03plc) and nag_pde_parab_1d_cd_ode_remesh (d03psc), the left and right
solution values are derived automatically from the solution values at adjacent spatial points and supplied to
the function argument numflx from which you may call nag_pde_parab_1d_euler_hll (d03pwc).

The Euler equations for a perfect gas in conservative form are:

@U

@t
þ @F

@x
¼ 0, ð1Þ

with

U ¼
�
m
e

2
4

3
5 and F ¼

m
m2

� þ � � 1ð Þ e� m2

2�

� �
me
� þ m

� � � 1ð Þ e� m2

2�

� �
2
64

3
75, ð2Þ

where � is the density, m is the momentum, e is the specific total energy and � is the (constant) ratio of
specific heats. The pressure p is given by

p ¼ � � 1ð Þ e� �u2

2

� �
, ð3Þ

where u ¼ m=� is the velocity.

The function calculates an approximation to the numerical flux function F UL;URð Þ ¼ F U � UL;URð Þð Þ,
where U ¼ UL and U ¼ UR are the left and right solution values, and U� UL;URð Þ is the intermediate
state ! 0ð Þ arising from the similarity solution U y; tð Þ ¼ ! y=tð Þ of the Riemann problem defined by

@U

@t
þ @F

@y
¼ 0, ð4Þ

with U and F as in (2), and initial piecewise constant values U ¼ UL for y < 0 and U ¼ UR for y > 0.
The spatial domain is �1 < y < 1, where y ¼ 0 is the point at which the numerical flux is required.

d03 – Partial Differential Equations d03pwc

[NP3660/8] d03pwc.1



4 References

Toro E F (1992) The weighted average flux method applied to the Euler equations Phil. Trans. R. Soc.
Lond. A341 499–530

Toro E F (1996) Riemann Solvers and Upwind Methods for Fluid Dynamics Springer–Verlag

Toro E F, Spruce M and Spears W (1994) Restoration of the contact surface in the HLL Riemann solver J.
Shock Waves 4 25–34

5 Arguments

1: uleft½3� – const double Input

On entry: uleft½i� 1� must contain the left value of the component Ui, for i ¼ 1; 2; 3. That is,
uleft½0� must contain the left value of �, uleft½1� must contain the left value of m and uleft½2� must
contain the left value of e.

Constraints:

uleft½0� � 0:0;
Left pressure, pl � 0:0, where pl is calculated using (3).

2: uright½3� – const double Input

On entry: uright½i� 1� must contain the right value of the component Ui, for i ¼ 1; 2; 3. That is,
uright½0� must contain the right value of �, uright½1� must contain the right value of m and
uright½2� must contain the right value of e.

Constraints:

uright½0� � 0:0;
Right pressure, pr � 0:0, where pr is calculated using (3).

3: gamma – double Input

On entry: the ratio of specific heats, �.

Constraint: gamma > 0:0.

4: flux½3� – double Output

On exit: flux½i� 1� contains the numerical flux component F̂i, for i ¼ 1; 2; 3.

5: saved – Nag_D03_Save * Communication Structure

Note: saved is a NAG defined type (see Section 2.2.1.1 of the Essential Introduction).

saved may contain data concerning the computation required by nag_pde_parab_1d_euler_hll
(d03pwc) as passed through to numflx from one of the integrator functions nag_pde_parab_1d_cd
(d03pfc), nag_pde_parab_1d_cd_ode (d03plc) or nag_pde_parab_1d_cd_ode_remesh (d03psc). You
should not change the components of saved.

6: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

d03pwc NAG C Library Manual

d03pwc.2 [NP3660/8]



NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

NE_REAL

Left pressure value pl < 0:0: pl ¼ valueh i.
On entry, gamma ¼ valueh i.
Constraint: gamma > 0:0.

On entry, uleft½0� < 0:0: uleft½0� ¼ valueh i.
On entry, uright½0� < 0:0: uright½0� ¼ valueh i.
Right pressure value pr < 0:0: pr ¼ valueh i.

7 Accuracy

nag_pde_parab_1d_euler_hll (d03pwc) performs an exact calculation of the HLL (Harten–Lax–van Leer)
numerical flux function, and so the result will be accurate to machine precision.

8 Further Comments

nag_pde_parab_1d_euler_hll (d03pwc) must only be used to calculate the numerical flux for the Euler
equations in exactly the form given by (2), with uleft½i� 1� and uright½i� 1� containing the left and right
values of �;m and e, for i ¼ 1; 2; 3, respectively. The time taken is independent of the input arguments.

9 Example

This example uses nag_pde_parab_1d_cd_ode (d03plc) and nag_pde_parab_1d_euler_hll (d03pwc) to
solve the Euler equations in the domain 0 � x � 1 for 0 < t � 0:035 with initial conditions for the
primitive variables � x; tð Þ, u x; tð Þ and p x; tð Þ given by

� x; 0ð Þ ¼ 5:99924, u x; 0ð Þ ¼ 19:5975, p x; 0ð Þ ¼ 460:894, for x < 0:5,
� x; 0ð Þ ¼ 5:99242, u x; 0ð Þ ¼ �6:19633, p x; 0ð Þ ¼ 46:095, for x > 0:5.

This test problem is taken from Toro (1996) and its solution represents the collision of two strong shocks
travelling in opposite directions, consisting of a left facing shock (travelling slowly to the right), a right
travelling contact discontinuity and a right travelling shock wave. There is an exact solution to this
problem (see Toro (1996)) but the calculation is lengthy and has therefore been omitted.

9.1 Program Text

/* nag_pde_parab_1d_euler_hll (d03pwc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>

/* Structure to communicate with user-supplied function arguments */

struct user
{

double elo, ero, rlo, rro, ulo, uro, gamma;

d03 – Partial Differential Equations d03pwc

[NP3660/8] d03pwc.3



};
static void bndary(Integer, Integer, double, const double[],

const double[], Integer, const double[],
const double[], Integer, double[], Integer *,
Nag_Comm *);

static void numflx(Integer, double, double, Integer, const double[],
const double[], const double[], double[], Integer *,
Nag_Comm *, Nag_D03_Save *);

#define UE(I,J) ue[npde*((J)-1)+(I)-1]
#define U(I,J) u[npde*((J)-1)+(I)-1]

int main(void)
{

const Integer npde=3, npts=141, ncode=0, nxi=0, neqn=npde*npts+ncode,
lisave=neqn+24, intpts=9, nwkres=npde*(2*npts+3*npde+32)+7*npts+4,
lenode=9*neqn+50, mlu=3*npde-1, lrsave=(3*mlu+1)*neqn+nwkres+lenode;

double d, p, tout, ts, v;
Integer exit_status, i, ind, itask, itol, itrace, k;
double *algopt=0, *atol=0, *rtol=0, *rsave, *u=0,

*ue=0, *x=0, *xi=0;
Integer *isave;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;
struct user data;

INIT_FAIL(fail);
exit_status = 0;

/* Allocate memory */

if ( !(algopt = NAG_ALLOC(30, double)) ||
!(atol = NAG_ALLOC(1, double)) ||
!(rtol = NAG_ALLOC(1, double)) ||
!(u = NAG_ALLOC(npde*npts, double)) ||
!(ue = NAG_ALLOC(npde*intpts, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xi = NAG_ALLOC(1, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)) )

{
Vprintf("Allocation failure\n");
exit_status = 1;
goto END;

}

Vprintf("nag_pde_parab_1d_euler_hll (d03pwc) Example Program Results\n");

/* Skip heading in data file */

Vscanf("%*[^\n] ");

/* Problem parameters */

data.gamma = 1.4;
data.rlo = 5.99924;
data.rro = 5.99242;
data.ulo = 5.99924*19.5975;
data.uro = -5.99242*6.19633;
data.elo = 460.894/(data.gamma-1.0) + 0.5*data.rlo*19.5975*19.5975;
data.ero = 46.095 /(data.gamma-1.0) + 0.5*data.rro*6.19633*6.19633;
comm.p = (Pointer)

/* Initialise mesh */

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);

/* Initial values */

for (i = 1; i <= npts; ++i)

d03pwc NAG C Library Manual

d03pwc.4 [NP3660/8]



{
if (x[i-1] < 0.5)

{
U(1, i) = data.rlo;
U(2, i) = data.ulo;
U(3, i) = data.elo;

} else if (x[i-1] == 0.5) {
U(1, i) = 0.5*(data.rlo + data.rro);
U(2, i) = 0.5*(data.ulo + data.uro);
U(3, i) = 0.5*(data.elo + data.ero);

} else {
U(1, i) = data.rro;
U(2, i) = data.uro;
U(3, i) = data.ero;

}
}

itrace = 0;
itol = 1;
atol[0] = 0.005;
rtol[0] = 5e-4;
xi[0] = 0.0;
ind = 0;
itask = 1;

for (i = 0; i < 30; ++i) algopt[i] = 0.0;

/* Theta integration */

algopt[0] = 2.0;
algopt[5] = 2.0;
algopt[6] = 2.0;

/* Max. time step */

algopt[12] = 0.005;

ts = 0.0;
tout = 0.035;

/* nag_pde_parab_1d_cd_ode (d03plc).
* General system of convection-diffusion PDEs with source
* terms in conservative form, coupled DAEs, method of
* lines, upwind scheme using numerical flux function based
* on Riemann solver, one space variable
*/

nag_pde_parab_1d_cd_ode(npde, &ts, tout, d03plp, numflx, bndary, u, npts,
x, ncode, d03pek, nxi, xi, neqn, rtol, atol, itol,
Nag_TwoNorm, Nag_LinAlgBand, algopt, rsave, lrsave,
isave, lisave, itask, itrace, 0, &ind, &comm, &saved,
&fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_pde_parab_1d_cd_ode (d03plc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

Vprintf(" t = %6.3f\n\n", ts);
Vprintf(" x APPROX d EXACT d APPROX v EXACT v");
Vprintf(" APPROX p EXACT p\n");

/* Read exact data at output points */

for (i = 1; i <= intpts; ++i)
{

Vscanf("%lf", &UE(1,i));
Vscanf("%lf", &UE(2,i));
Vscanf("%lf", &UE(3,i));

d03 – Partial Differential Equations d03pwc

[NP3660/8] d03pwc.5



}

/* Calculate density, velocity and pressure */

k = 0;
for (i = 15; i <= 127; i += 14)

{
++k;
d = U(1, i);
v = U(2, i)/d;
p = d*(data.gamma-1.0)*(U(3, i)/d - 0.5*v*v);
Vprintf(" %8.2e", x[i-1]);
Vprintf(" %10.4e", d);
Vprintf(" %10.4e", UE(1,k));
Vprintf(" %10.4e", v);
Vprintf(" %10.4e", UE(2,k));
Vprintf(" %10.4e", p);
Vprintf(" %10.4e\n", UE(3,k));

}

Vprintf("\n");
Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations =%6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:
if (algopt) NAG_FREE(algopt);
if (atol) NAG_FREE(atol);
if (rtol) NAG_FREE(rtol);
if (u) NAG_FREE(u);
if (ue) NAG_FREE(ue);
if (rsave) NAG_FREE(rsave);
if (x) NAG_FREE(x);
if (xi) NAG_FREE(xi);
if (isave) NAG_FREE(isave);

return exit_status;
}
static void bndary(Integer npde, Integer npts, double t, const double x[],

const double u[], Integer ncode, const double v[],
const double vdot[], Integer ibnd, double g[],
Integer *ires, Nag_Comm *comm)

{
struct user *data = (struct user *)comm->p;

if (ibnd == 0)
{

g[0] = U(1, 1) - data->rlo;
g[1] = U(2, 1) - data->ulo;
g[2] = U(3, 1) - data->elo;

} else {
g[0] = U(1, npts) - data->rro;
g[1] = U(2, npts) - data->uro;
g[2] = U(3, npts) - data->ero;

}
return;

}
static void numflx(Integer npde, double t, double x, Integer ncode,

const double v[], const double uleft[],
const double uright[], double flux[], Integer *ires,
Nag_Comm *comm, Nag_D03_Save *saved)

{
struct user *data = (struct user *)comm->p;
NagError fail;

INIT_FAIL(fail);
/* nag_pde_parab_1d_euler_hll (d03pwc).
* Modified HLL Riemann solver for Euler equations in
* conservative form, for use with nag_pde_parab_1d_cd
* (d03pfc), nag_pde_parab_1d_cd_ode (d03plc) and

d03pwc NAG C Library Manual

d03pwc.6 [NP3660/8]



* nag_pde_parab_1d_cd_ode_remesh (d03psc)
*/

nag_pde_parab_1d_euler_hll(uleft, uright, data->gamma, flux, saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_pde_parab_1d_euler_hll (d03pwc).\n%s\n",
fail.message);

}

return;
}

9.2 Program Data

nag_pde_parab_1d_euler_hll (d03pwc) Example Program Data
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.1428E+02 0.8690E+01 0.1692E+04
0.1428E+02 0.8690E+01 0.1692E+04
0.1428E+02 0.8690E+01 0.1692E+04
0.3104E+02 0.8690E+01 0.1692E+04

9.3 Program Results

nag_pde_parab_1d_euler_hll (d03pwc) Example Program Results
t = 0.035

x APPROX d EXACT d APPROX v EXACT v APPROX p EXACT p
1.00e-01 5.9992e+00 5.9990e+00 1.9598e+01 1.9600e+01 4.6089e+02 4.6090e+02
2.00e-01 5.9992e+00 5.9990e+00 1.9598e+01 1.9600e+01 4.6089e+02 4.6090e+02
3.00e-01 5.9992e+00 5.9990e+00 1.9598e+01 1.9600e+01 4.6089e+02 4.6090e+02
4.00e-01 5.9992e+00 5.9990e+00 1.9598e+01 1.9600e+01 4.6089e+02 4.6090e+02
5.00e-01 5.9992e+00 5.9990e+00 1.9597e+01 1.9600e+01 4.6089e+02 4.6090e+02
6.00e-01 1.4221e+01 1.4280e+01 8.6581e+00 8.6900e+00 1.6872e+03 1.6920e+03
7.00e-01 1.4255e+01 1.4280e+01 8.6697e+00 8.6900e+00 1.6881e+03 1.6920e+03
8.00e-01 1.9444e+01 1.4280e+01 8.6783e+00 8.6900e+00 1.6905e+03 1.6920e+03
9.00e-01 3.1002e+01 3.1040e+01 8.6765e+00 8.6900e+00 1.6868e+03 1.6920e+03

Number of integration steps in time = 699
Number of function evaluations = 1714
Number of Jacobian evaluations = 1
Number of iterations = 2

d03 – Partial Differential Equations d03pwc

[NP3660/8] d03pwc.7 (last)


	d03pwc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	uleft
	uright
	gamma
	flux
	saved
	fail

	6 Error Indicators and Warnings
	NE_BAD_PARAM
	NE_INTERNAL_ERROR
	NE_REAL

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction



